skip to main content


Search for: All records

Creators/Authors contains: "Popp, Alexander"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Land conservation and increased carbon uptake on land are fundamental to achieving the ambitious targets of the climate and biodiversity conventions. Yet, it remains largely unknown how such ambitions, along with an increasing demand for agricultural products, could drive landscape-scale changes and affect other key regulating nature’s contributions to people (NCP) that sustain land productivity outside conservation priority areas. By using an integrated, globally consistent modelling approach, we show that ambitious carbon-focused land restoration action and the enlargement of protected areas alone may be insufficient to reverse negative trends in landscape heterogeneity, pollination supply, and soil loss. However, we also find that these actions could be combined with dedicated interventions that support critical NCP and biodiversity conservation outside of protected areas. In particular, our models indicate that conserving at least 20% semi-natural habitat within farmed landscapes could primarily be achieved by spatially relocating cropland outside conservation priority areas, without additional carbon losses from land-use change, primary land conversion or reductions in agricultural productivity.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    Achieving sustainable development requires understanding how human behavior and the environment interact across spatial scales. In particular, knowing how to manage tradeoffs between the environment and the economy, or between one spatial scale and another, necessitates a modeling approach that allows these different components to interact. Existing integrated local and global analyses provide key insights, but often fail to capture ‘meso-scale’ phenomena that operate at scales between the local and the global, leading to erroneous predictions and a constrained scope of analysis. Meso-scale phenomena are difficult to model because of their complexity and computational challenges, where adding additional scales can increase model run-time exponentially. These additions, however, are necessary to make models that include sufficient detail for policy-makers to assess tradeoffs. Here, we synthesize research that explicitly includes meso-scale phenomena and assess where further efforts might be fruitful in improving our predictions and expanding the scope of questions that sustainability science can answer. We emphasize five categories of models relevant to sustainability science, including biophysical models, integrated assessment models, land-use change models, earth-economy models and spatial downscaling models. We outline the technical and methodological challenges present in these areas of research and discuss seven directions for future research that will improve coverage of meso-scale effects. Additionally, we provide a specific worked example that shows the challenges present, and possible solutions, for modeling meso-scale phenomena in integrated earth-economy models.

     
    more » « less
  3. null (Ed.)